7mfrd9uptrulprslgfup

Uczenie Maszynowe - Drzewa Decyzyjne i Lasy Losowe - Python (5.5h)

Poznaj od podstaw algorytmy uczenia maszynowego w języku Python! Twórz własne modele w bibliotece scikit-learn!

   Obejrzyj promo   Zapisz się na kurs

Odnajdź się w świecie uczenia maszynowego!

Sztuczna Inteligencja (Artificial Intelligence) rośnie w tempie wykładniczym. Od prostych modeli klasyfikujących pocztę mailową, wybierającą najbardziej optymalną trasę dojazdu, rozpoznającą nas w czasie rzeczywistym (wideoweryfikacja) po auta a nawet samoloty autonomiczne. A przed nami przecież tyle nieodkrytych obszarów w których można zastosować AI.


Promo Video

Czego między innymi nauczysz się na kursie?

  • Czym jest uczenie maszynowe
  • Rodzaje uczenia maszynowego i główne problemy
  • Modele klasyfikacji i regresji
  • Jak działają algorytmy drzew decyzyjnych
  • Elementy składowe drzew decyzyjnych
  • Implementacja drzewa decyzyjnego w języku Python
  • Budowa modeli drzew decyzyjnych i lasów losowych przy użyciu biblioteki scikit-learn
  • Problemy uczenia maszynowego: niedouczenie, przeuczenie
  • 2 x Case Study

Przykładowa lekcja - Implementacja Drzewa Decyzyjnego

(lekcja typu ćwiczenie)



Do czego służy bibliotek scikit-learn?

Biblioteka scikit-learn jest bogatą biblioteką typu open source dostępną w języku Python przeznaczoną do uczenia maszynowego. Moduł scikit-learn zawiera wiele algorytmów z dziedziny uczenia nadzorowanego i nienadzorowanego. Biblioteka udostępniana jest na licencji BSD, co pozwala na użytkowanie zarówno komercyjne jak i akademickie.

Zawiera wiele różnych narzędzi wykorzystywanych w uczeniu maszynowym, m. in:

  • przykładowe zbiory danych
  • modele uczenia nadzorowanego
  • modele uczenia nienadzorowanego
  • redukcja wymiarowości
  • metody zespołowe
  • walidacja krzyżowa
  • optymalizacja parametrów modelu
  • selekcja cech

Czy istnieją jakieś wymagania dotyczące kursu?

Recenzje uczestników:


Program szkolenia


  Drzewa decyzyjne - Regresja
Dostępne w dni
dni po rejestracji

Twój instruktor


Paweł Krakowiak
Paweł Krakowiak

Data Scientist, Securities Broker

Założyciel platformy e-smartdata.org

Autor kilkunastu szkoleń online z zakresu języka python, analizy danych, data science, uczenia maszynowego, uczenia głębokiego, sieci neuronowych czy sztucznej inteligencji.

Miłośnik nowych technologii, szczególnie w obszarze sztucznej inteligencji, big data oraz rozwiązań chmurowych.

Absolwent podyplomowych studiów na Polsko-Japońskiej Akademii Technik Komputerowych na kierunku Informatyka, spec. Big Data.

Absolwent studiów magisterskich z matematyki finansowej i aktuarialnej na wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego.

Od 2015 roku posiadacz licencji maklera papierów wartościowych z uprawnieniami do czynności doradztwa inwestycyjnego.

Wykładowca w Fundacji GPW prowadzący szkolenia dla inwestorów z zakresu analizy technicznej, finansów behawioralnych i zasad zarządzania portfelem instrumentów finansowych.

Z doświadczeniem w prowadzeniu zajęć dydaktycznych na wyższej uczelni z przedmiotów związanych z rachunkiem prawdopodobieństwa i statystyką.

Kilkadziesiąt wystąpień publicznych o tematyce rynków finansowych, czy data science.

Główne obszary zainteresowań to sztuczna inteligencja, uczenie maszynowe, uczenie głębokie i rynki finansowe.


 

NIE WIESZ GDZIE ZACZĄĆ?

REKOMENDOWANE ŚCIEŻKI UCZENIA

ALL-IN-ONE

PYTHON DEVELOPER:

DATA SCIENTIST / MACHINE LEARNING ENGINEER:

DATA SCIENTIST / DEEP LEARNING ENGINEER:

BI ANALYST / DATA ANALYST:

BIG DATA ANALYST:

C DEVELOPER:

C++ DEVELOPER:

Chcesz być na bieżąco? Dołącz do społeczności e-smartdata na Facebooku!

Ucz się, komentuj, pytaj, nawiązuj znajomości!


Planujesz zakup większej ilości kursów na platformie?

Odezwij się do nas, damy solidną zniżkę!

Pozdrawiamy,
Zespół e-smartdata.org
[email protected]

Często zadawane pytania (FAQ)


Kiedy zaczyna i kończy się kurs?
Kurs zaczyna się od momentu zakupu i nigdy się nie kończy! Ty decydujesz, kiedy zaczynasz i kiedy kończysz.
Jak długo mam dostęp do kursu?
Po rejestracji masz nieograniczony dostęp do tego kursu tak długo, jak chcesz - na dowolnym urządzeniu, które posiadasz.
Co jeśli jestem niezadowolony z kursu?
Jeśli nie jesteś zadowolony z zakupu, skontaktuj się z nami w ciągu pierwszych 14 dni, a my damy ci zwrot pieniędzy w zależności od procentu zaawansowania danego kursu/ścieżki.

Zacznij teraz!